面向复杂环境的航空弹药适应性设计

何建忱, 邱欣妮, 周建宏, 张亚军, 沈明川, 张世盈, 葛连恒

装备环境工程 ›› 2025, Vol. 22 ›› Issue (10) : 1-10.

PDF(2955 KB)
PDF(2955 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (10) : 1-10. DOI: 10.7643/ issn.1672-9242.2025.10.001
武器装备

面向复杂环境的航空弹药适应性设计

  • 何建忱1, 邱欣妮2, 周建宏3, 张亚军1, 沈明川1, 张世盈1, 葛连恒1
作者信息 +

Adaptive Design of Aviation Ammunition for Complex Environments

  • HE Jianchen1, QIU Xinni2, ZHOU Jianhong3, ZHANG Yajun1, SHEN Mingchuan1, ZHANG Shiying1, GE Lianheng1
Author information +
文章历史 +

摘要

针对未来战争中航空弹药在复杂环境下的作战效能、可靠性与安全性面临严峻挑战的问题,基于航空弹药全寿命周期复杂环境剖面分析,重点分析了复杂环境对航空弹药的性能、可靠性、安全性及整体作战效能的影响,围绕“全寿命周期环境适应性设计”和“复杂环境耦合试验验证”两大核心,提出航空弹药环境适应性设计方法。航空弹药环境适应性设计关键在于仿真分析与试验验证的紧密结合,利用CAE工具进行早期预测与优化,并最终通过严格的环境试验进行确认,提倡采用模块化、标准化设计,突出系统性、预测性与工程实用性,以提高设计的灵活性、可维护性,并便于未来升级和适应性改进,为航空弹药复杂环境适应性的全流程验证提供思路。

Abstract

In response to the severe challenges concerning the operational effectiveness, reliability, and safety of aerial munitions in complex environments within future warfare, this paper conducts an analysis based on the complex environmental profile throughout the entire life cycle of aerial munitions. Focusing on the impact of complex environments on the performance, reliability, safety, and overall operational effectiveness of aerial munitions, and centering on the two core aspects of “life-cycle environmental adaptability design” and “complex environment-coupled test validation”, a design methodology for enhancing the environmental adaptability of aerial munitions is proposed. The key to this methodology lies in the close integration of simulation analysis and experimental verification. CAE tools are utilized for early-stage prediction and optimization, with final confirmation achieved through rigorous environmental testing. The approach advocates for modular and standardized design, and emphasizes systematicity, predictability, and engineering practicality to improve design flexibility and maintainability, thereby facilitating future upgrades and adaptive modifications. This provides a framework for the comprehensive process validation of complex environmental adaptability in aerial munitions.

关键词

航空弹药 / 复杂环境 / 适应性设计 / 可靠性 / 全寿命周期

Key words

aviation ammunition / complex environment / environmental adaptability design / reliability / entire life cycle

引用本文

导出引用
何建忱, 邱欣妮, 周建宏, 张亚军, 沈明川, 张世盈, 葛连恒. 面向复杂环境的航空弹药适应性设计[J]. 装备环境工程. 2025, 22(10): 1-10 https://doi.org/10.7643/ issn.1672-9242.2025.10.001
HE Jianchen, QIU Xinni, ZHOU Jianhong, ZHANG Yajun, SHEN Mingchuan, ZHANG Shiying, GE Lianheng. Adaptive Design of Aviation Ammunition for Complex Environments[J]. Equipment Environmental Engineering. 2025, 22(10): 1-10 https://doi.org/10.7643/ issn.1672-9242.2025.10.001
中图分类号: TJ410.1   

参考文献

[1] 盖炳良, 刘亚雷, 林国语. 美国海岸警卫队在研无人装备现状分析[J]. 火力与指挥控制, 2024, 49(6): 1-7.
GAI B L, LIU Y L, LIN G Y.Analysis of the Status Quo of the U.S. Coast Guard Developing Unmanned Equipments[J]. Fire Control & Command Control, 2024, 49(6): 1-7.
[2] 孙畅, 韩允. 舰船电子设备环境适应性及其电磁兼容性设计[J]. 船电技术, 2010, 30(5): 53-56.
SUN C, HAN Y.Design of Warship Control System Environment Protection and EMC[J]. Marine Electric & Electronic Engineering, 2010, 30(5): 53-56.
[3] 汤文军, 蒋怀贞, 高健, 等. 锂电池管理系统的船用工况环境适应性分析[J]. 船海工程, 2022, 51(3): 100-103.
TANG W J, JIANG H Z, GAO J, et al.Environmental Adaptability Analysis of Lithium Battery Management System in Marine Operating Conditions[J]. Ship & Ocean Engineering, 2022, 51(3): 100-103.
[4] 赵保平, 张韬, 孙建亮, 等. 航天复杂产品研发中的环境适应性设计[J]. 强度与环境, 2013, 40(5): 1-9.
ZHAO B P, ZHANG T, SUN J L, et al.Design of Environmental Worthiness for Aerospace Product System[J]. Structure & Environment Engineering, 2013, 40(5): 1-9.
[5] 胡思琪, 徐刚, 张泉清, 等. 航空装备模拟天空光环境试验标准化工作现状研究[J]. 航空标准化与质量, 2024(1): 12-15.
HU S Q, XU G, ZHANG Q Q, et al.Research on Standardization of Simulated Sky Light Environment Test of Aviation Equipment[J]. Aeronautic Standardization & Quality, 2024(1): 12-15.
[6] 周堃, 吴护林, 吴德权, 等. 环境试验与装备环境工程发展历程及相关标准[J]. 装备环境工程, 2025, 22(3): 146-151.
ZHOU K, WU H L, WU D Q, et al.Development Process and Related Standards of Environmental Testing and Equipment Environmental Engineering[J]. Equipment Environmental Engineering, 2025, 22(3): 146-151.
[7] 刘祚黎, 崔守军. 无人武器变革及其对非对称安全关系的影响[J]. 国际安全研究, 2023, 41(2): 23-48.
LIU Z L, CUI S J.Evolution of Unmanned Weapons and Its Implications for Asymmetric Security[J]. Journal of International Security Studies, 2023, 41(2): 23-48.
[8] 王春晖, 陈文杰, 贺天远, 等. 我国装备开展实验室环境试验现状与发展建议[J]. 电子产品可靠性与环境试验, 2021, 39(S1): 122-127.
WANG C H, CHEN W J, HE T Y, et al.Present Situation and Development Suggestions of Laboratory Environmental Test for Equipment in China[J]. Electronic Product Reliability and Environmental Testing, 2021, 39(S1): 122-127.
[9] 康志萍. 环境试验特点及其发展方向[J]. 环境技术, 2012, 30(4): 15-18.
KANG Z P.The Characteristic and Development Direction of Environmental Test[J]. Environmental Technology, 2012, 30(4): 15-18.
[10] 许亚洪. 巡航导弹树脂基结构复合材料的应用与发展[J]. 热固性树脂, 2008, 23(S1): 36-38.
XU Y H.Application and Development of Resin Matrix Structural Composite for Cruise Missile[J]. Thermosetting Resin, 2008, 23(S1): 36-38.
[11] 杨鸿昌. 飞航导弹复合材料的应用概况、需求及发展前景[J]. 飞航导弹, 2000(4): 60-63.
YANG H C.Application, Demand and Development Prospect of Composite Materials for Cruise Missiles[J]. Winged Missiles Journal, 2000(4): 60-63.
[12] 康蓉莉, 冯雪艳, 何恩山. 兵器装备环境工程发展需求[J]. 装备环境工程, 2010, 7(3): 56-58.
KANG R L, FENG X Y, HE E S.Development Requirements of Weapon Materiel Environmental Engineering[J]. Equipment Environmental Engineering, 2010, 7(3): 56-58.
[13] 武月琴, 傅耘. 装备环境适应性表征方法研究[J]. 装备环境工程, 2008, 5(6): 52-55.
WU Y Q, FU Y.Research on Characterization of Equipment Environmental Worthiness[J]. Equipment Environmental Engineering, 2008, 5(6): 52-55.
[14] 罗天元. 装备环境适应性的定量化表征技术探讨[J]. 装备环境工程, 2010, 7(6): 150-152.
LUO T Y.Study on Quantitative Characterization Technique of Environmental Worthiness of Equipments[J]. Equipment Environmental Engineering, 2010, 7(6): 150-152.
[15] 祝耀昌, 张建军. 武器装备环境适应性要求、环境适应性验证要求和环境条件及其相互关系的讨论(一)[J]. 航天器环境工程, 2012, 29(1): 1-6.
ZHU Y C, ZHANG J J.Relationship among Environmental Adaptability Requirements, verification Requirements of Environmental Adaptability and Environmental Conditions(Part One)[J]. Spacecraft Environment Engineering, 2012, 29(1): 1-6.
[16] 房灿新, 郭兴旺. 一种面向复杂作战试验环境的水面舰艇作战效能评估方法[J]. 中国舰船研究, 2023, 18(3): 259-265.
FANG C X, GUO X W.An Operational Effectiveness Evaluation Method for Surface Warships in Complex Operational Test Environment[J]. Chinese Journal of Ship Research, 2023, 18(3): 259-265.
[17] 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908.
LIU L, LIU D W, WANG X G, et al.Development Status and Prospect of UAV Cluster and Anti-UAV Cluster[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908.
[18] 祝耀昌, 张建军. 武器装备环境适应性要求、环境适应性验证要求和环境条件及其相互关系的讨论(二)[J]. 航天器环境工程, 2012, 29(2): 119-122.
ZHU Y C, ZHANG J J.Discussion of Relationships among Environmental Worthiness Requirement, verification Requirement of Environmental Worthiness and Environmental Conditions of Materiel (Part Two)[J]. Spacecraft Environment Engineering, 2012, 29(2): 119-122.
[19] 王成章, 钟勇, 张薇, 等. 航空装备环境适应性试验鉴定工作展望[J]. 装备环境工程, 2023, 20(5): 6-11.
WANG C Z, ZHONG Y, ZHANG W, et al.Prospect of Environmental Adaptability Test and Appraisal of Aviation Equipment[J]. Equipment Environmental Engineering, 2023, 20(5): 6-11.
[20] 文邦伟, 胥泽奇. 外军装备环境适应性典型案例[J]. 装备环境工程, 2005, 2(3): 83-87.
WEN B W, XU Z Q.The Typical Cases of Environmental Worthiness of Foreign Materiel[J]. Metal Forming Technology, 2005, 2(3): 83-87.
[21] 郭迅, 郭强岭. 空空导弹振动试验条件分析[J]. 装备环境工程, 2012, 9(3): 99-103.
GUO X, GUO Q L.Analysis of Vibration Test Condition of Air-to-Air Missile[J]. Equipment Environmental Engineering, 2012, 9(3): 99-103.
[22] 赵朋飞, 张生鹏, 翟疆, 等. 航天导弹装备自然环境试验方法探讨[J]. 装备环境工程, 2017, 14(11): 37-43.
ZHAO P F, ZHANG S P, ZHAI J, et al.Testing Methods for Space Missile Materiel in Natural-Environment[J]. Equipment Environmental Engineering, 2017, 14(11): 37-43.
[23] 许雪冬, 刘鑫. 环境试验标准化发展及现状分析[J]. 中国标准化, 2024(4): 71-75.
XU X D, LIU X.Analysis of the Development and Present Situation of Environmental Testing Standardization[J]. China Standardization, 2024(4): 71-75.
[24] 装备性能试验编写组. 装备性能试验[M]. 北京: 国防工业出版社, 2020: 175.
Equipment Performance Test Writing Group. Performance Test for Materiel[M]. Beijing: Defense Industry Press, 2020: 175.
[25] 蔡健平. 装备环境适应性与装备环境工程[M]. 北京: 航空工业出版社, 2019.
CAI J P.Materiel Environmental Worthiness and Materiel Environmental Engineering[M]. Beijing: Aviation Industry Press, 2019.
[26] 祝耀昌. 产品环境工程概论[M]. 北京: 航空工业出版社, 2003.
ZHU Y C.Introduction to Product Environmental Engineering[M]. Beijing: Aviation Industry Press, 2003.
[27] 齐铖, 谢军伟, 张浩为, 等. 基于防空目标探测与跟踪的雷达资源管理技术研究综述[J]. 信号处理, 2024, 40(11): 1972-1989.
QI C, XIE J W, ZHANG H W, et al.Review of Radar Resource Management Technology for Air Defense Target Detection and Tracking[J]. Journal of Signal Processing, 2024, 40(11): 1972-1989.
[28] 石建勋, 徐玲. 加快形成新质生产力的重大战略意义及实现路径研究[J]. 财经问题研究, 2024(1): 3-12.
SHI J X, XU L.Major Strategic Significance and Implementation Path of Accelerating the Formation of New Quality Productivity[J]. Research on Financial and Economic Issues, 2024(1): 3-12.
[29] 朱英富, 熊治国, 胡玉龙. 航空母舰发展的思考[J]. 中国舰船研究, 2016, 11(1): 1-7.
ZHU Y F, XIONG Z G, HU Y L.On the Development Trends of Aircraft Carriers[J]. Chinese Journal of Ship Research, 2016, 11(1): 1-7.
[30] 王江涛, 陈帅, 沈承, 等. 吸波材料/结构及吸波-承载功能一体化结构研究进展[J]. 复合材料学报, 2024, 41(8): 3866-3882.
WANG J T, CHEN S, SHEN C, et al.Progress of Wave- Absorbing Materials/Structures and Wave Absorbing- Load Bearing Multifunctional Structures[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 3866-3882.
[31] 黄峻峰, 贺尔铭, 陈鹏翔, 等. 某型改性环氧树脂力热特性研究[J]. 西北工业大学学报, 2021, 39(5): 978-986.
HUANG J F, HE E M, CHEN P X, et al.Study on Mechanical and Thermal Properties of a Modified Epoxy Resin[J]. Journal of Northwestern Polytechnical University, 2021, 39(5): 978-986.
[32] 王耀南, 安果维, 王传成, 等. 智能无人系统技术应用与发展趋势[J]. 中国舰船研究, 2022, 17(5): 9-26.
WANG Y N, AN G W, WANG C C, et al.Technology Application and Development Trend of Intelligent Unmanned System[J]. Chinese Journal of Ship Research, 2022, 17(5): 9-26.
[33] 郑元勋, 李清华, 王常虹, 等. 基于多磁信标的指纹匹配定位算法[J]. 遥感学报, 2022, 26(10): 2073-2082.
ZHENG Y X, LI Q H, WANG C H, et al.Accurate Navigation and Positioning Method Based on Magnetic Beacon[J]. National Remote Sensing Bulletin, 2022, 26(10): 2073-2082.
[34] 周阳红生, 张洪彬, 薛海红, 等. 我国综合环境试验现状与发展建议[J]. 装备环境工程, 2018, 15(5): 44-47.
ZHOU Y, ZHANG H B, XUE H H, et al.Current Situations and Development Suggestions of Combined Environmental Test in China[J]. Equipment Environmental Engineering, 2018, 15(5): 44-47.
[35] 王月, 孙付平. 卫星导航对抗性能与效能评估研究发展分析与思考[J/OL]. 武汉大学学报(信息科学版), 2025: 1-25.(2025-01-11)[ 2025-01-26]. https:// doi.org/10.13203/j.whugis20240314.
WANG Y, SUN F P. Analysis and Thinking on the Development of Performance Evaluation and Efficacy Evaluation for Satellite Navigation Countermeasures[J/OL]. Journal of Wuhan University (Information Science Edition), 2025: 1-25.(2025-01-11)[ 2025-01- 26]. https://doi.org/10.13203/j.whugis20240314.
[36] 张仁群, 贺勇. 机载电子设备高温环境适应性设计及试验方法研究[J]. 环境技术, 2024, 42(12): 38-41.
ZHANG R Q, HE Y.Research on High-Temperature Environment Adaptability Design and Test Methods for Airborn Electronic Equipment[J]. Environmental Technology, 2024, 42(12): 38-41.
[37] 蔡芬, 王涛, 徐静, 等. 舰船环境适应性设计方法探索与实践[J]. 装备环境工程, 2024, 21(5): 57-65.
CAI F, WANG T, XU J, et al.Exploration and Practice of Environmental Worthiness Design of Warships[J]. Equipment Environmental Engineering, 2024, 21(5): 57-65.
[38] 李茜, 胡涛, 孙茂钧, 等. 海洋大气环境多因素组合/ 综合试验及方法现状分析[J]. 装备环境工程, 2023, 20(3): 84-90.
LI Q, HU T, SUN M J, et al.Analysis of Multi-Factor Combined/Comprehensive Test and Method in Marine Atmospheric Environment[J]. Equipment Environmental Engineering, 2023, 20(3): 84-90.

PDF(2955 KB)

Accesses

Citation

Detail

段落导航
相关文章

/